
ClockWork: An Exchange
Protocol for Proofs of Non
Front-Running

Dan Cline: University of Massachusetts, Amherst*
Tadge Dryja, Neha Narula: MIT DCI

1*Research conducted while working at the MIT Digital Currency Initiative

Exchange Systems
Exchange Systems allow users to trade assets with
each other at some exchange rate.

- We focus on centralized exchange systems
- These are not necessarily cryptocurrency

exchanges
- Users post orders to trade assets
- Orders get matched to execute a trade of assets
- Order contents (price, amount) are visible to all

2

Front-Running
Front-running is when the exchange makes a decision on
how to match orders based on the contents of the orders
themselves.

This allows the exchange to gain some sort of profit or
advantage risk-free.

- This is bad - the user took the risk, not the exchange!
- The exchange is stealing from users!

Now imagine Alice and Bob trying to trade on an
exchange…

3

Front-Running: Insertion
The exchange can insert its own orders based on the
contents of orders before matching:

Alice places a sell order for an asset at $5

Bob places a buy order for an asset at $10

Exchange sees this, inserts orders which buys the asset
from Alice for $5 and sells it back to bob at a price of $10

- Exchange is stealing profit from Bob using insider
knowledge

4

Front-Running: Dropping
The exchange can drop users’ orders based on the
contents of orders before matching:

Alice places buy order at $10

Bob places sell order at $9

Exchange places sell order at $10

Exchange drops Bob’s order, gets to sell at $10

5

Front-running by insertion
and dropping motivate blind
commitment

- We do not want the
exchange to see orders
before committing to
matching them.

Security Goals

Blind Commitment: The exchange
commits to a batch without knowing any
information about the orders in the
batch.

6

A strawman design - Commit/Reveal

Let’s try to design a system to achieve this.

We don’t want the exchange to know orders
before committing to matching them.

So let’s have users submit commitments to
orders, and reveal them after the exchange has
signed their commitment.

7

A strawman design - Commit/Reveal

Alice, Bob, and others would like to trade on an
exchange.

They take their orders and commit to them,
send them to the exchange.

C
1

 ← Commit(O
1

)
C

2
 ← Commit(O

2
)

C
3

 ← Commit(O
3

)

8

C
1

C
2

C
3

A strawman design - Commit/Reveal

Then, the exchange signs this set of orders:
S

E
 ← Sign

E
(C

1
, C

2
, C

3
)

And sends them to users.

9

{C
1

,C
2

,C
3

, S
E

}

A strawman design - Commit/Reveal

Then, the exchange signs this set of orders:
S

E
 ← Sign

E
(C

1
, C

2
, C

3
)

And sends them to users.

10

O
1

O
2

O
3Finally, the users reveal their orders, and the

exchange computes the result of the matching
algorithm, and executes trades.

Does Commit/Reveal solve front-running?

The exchange cannot insert orders after committing...

But what happens if not every order is revealed?

Option 1: Execute batch anyway

- The exchange can pretend it never received a users’ reveal, users can’t tell
- Exchange can insert many orders and drop subset once they see revealed

orders

Option 2: Throw out batch

- Users can halt the system by not revealing
- Exchange can throw out un-advantageous batches after reveals

11

Alternative solutions

Bonded Commit/Reveal is an alternative to normal Commit/Reveal - but what
does it solve?

- Incentivizes users to reveal rather than abort
- This is good - disincentivizes malicious users

Downsides:

- Ties up capital
- Still might be profitable to front-run
- Exchanges can censor reveals, making it appear that users failed to reveal

and lose their bond

12

Security Goals

Blind Commitment: The exchange commits to a
batch without knowing any information about
the orders in the batch.

Binding Execution:

- All valid committed orders included in
execution

Liveness:

- Invalid orders or malicious users cannot
halt order execution

13

Can we prevent front-running?

Can users get evidence that the exchange did not
front run their order?

14

The ClockWork Protocol

ClockWork consists of four main steps:

Setup: Exchange sends parameters to
users.

Send: Users send puzzles to exchange.

Commit: Exchange commits to a set of
puzzles.

Open: Exchange solves puzzles and users
attest non front-running to exchange.

15

Unlock
orders

Match
orders

Execute
orders

Exchange

Before attesting, a user is convinced the
exchange could not have front-run their order.

Key Insight

Timed Commitments [BN00] are a great idea for
implementing an exchange protocol!

We use Timed Commitments and Timelock Puzzles [RSW96]
to make sure the exchange has no way of knowing a set of
orders before committing to matching them.

Timed commitments and timelock puzzles let us guarantee
the eventual opening of puzzles.

16

Timed Commitments

We use timelock puzzles to achieve the same features as
Timed Commitments:

(c,N,p) ← Timelock(m,t)

Using the puzzle trapdoor, one can unlock the message
quickly:

m ← TimeUnlockFast(t,c,N,p)

But if there is no trapdoor, the message can still be obtained
slowly (in t steps):

m ← TimeUnlockSlow(t,c,N)
17

Timelock Puzzles

Timelock puzzles take a message m and create a puzzle that
cannot be solved in less than t steps:

- First, compute a modulus N=pq
- Next, compute φ(N) = (p-1)(q-1)
- Compute puzzle result b = 2^{2^t (mod φ(N))} (mod N)
- Create a symmetric key from b
- Encrypt order with AES-GCM, returning ciphertext c

i
.

18

System Model

The exchange:

- Accepts incoming orders
- Orders settled based on public matching

algorithm

Participants: Users u
1
, … , u

i
, … , u

n
 which

place orders on the exchange.

We want to constrain the exchange from
carrying out front-running.

19

Threat Model

The Exchange wants to match some users’ orders in order to make money, but
otherwise may be malicious.

Users want to trade, but may want to gain an advantage over one another, or disrupt
the trading process. We model the users as potentially malicious.

The Exchange has access to many parallel computing resources.

Even if all other users collude with the exchange, we want the user to have a
guarantee that they were not front-run.

20

ClockWork Design: Setup

The exchange sends a unique batch ID and
puzzle difficulty parameter t to users.

B
at

ch
 ID

: 4
f6

db
c0

8

Puz
zl

e
D

iffi
cu

lty
: t

The exchange also publishes the matching
algorithm M it will be using for the batch.

Users come up with a safety parameter 𝚫
i
 = ct.

21

ClockWork Design: Send Orders

Then users encrypt their order and create a
corresponding timelock puzzle:

(c
i
, N

i
, p

i
) ← Timelock(O

i
, t).

They then sign this data:
σ

i
 ← Sign

E
((c

i
, N

i
))

And sign and send (c
i
, N

i
, σ

i
) to the exchange.

This is efficient for users - they generate the
trapdoor p

i

22

(c i,
N i,

σ i)

ClockWork Design: Commit

The Exchange verifies all signatures σ
i
 for all i and

creates a commitment to the puzzles.
Let’s call the set of all (N

i
,c

i
,σ

i
) the PuzzleSet.

The exchange signs the set
Sig

E
 ← Sign(PuzzleSet)

and sends (Sig
E
, PuzzleSet) to users.

(S
ig E

, C
om

m E
, P

uz
zl

eS
et

)

23

ClockWork Design: Attest

Users mark the difference in time between
submitting an order and receiving the
commitment.

If this difference in time 𝚫
i
’ > 𝚫

i
 for user i, then

user i does not sign. Otherwise, user i signs and
sends the data received from the exchange and
the trapdoor:

S
i
 ← Sign(Sig

E
, PuzzleSet, p

i
)

✅ ✅✅ ✅❌

❌

S i

24

ClockWork Design: Open

Finally, the exchange solves the timelock puzzles
and sends the results to users.

Pz
1
, Pz

2
, … , Pz

i
, … , Pz

n-1
, Pz

n

Puzzle Solver

Puzzle Results

25

The exchange can solve MANY puzzles in parallel,
but not ONE puzzle.

Some puzzles do not need to be solved because
users received a commitment in time and sent
trapdoor.

Implementation

Protocol implemented and benchmarked in Go:

- https://github.com/mit-dci/opencx

https://github.com/mit-dci/opencx

Future Work

- Would love to see applications of this to
smart contract-based exchange!

Thank You!

