
Massachusetts Institute of Technology

Media Lab’s Digital Currency Initiative

Sloan School of Management

DCI Working Group

Oracle for Smart Cities

With Use Case:
Parametric Flight Delay Insurance

15.S68 - Blockchain Lab

James Fok - SFMBA 2019

Mark Adams - MBA 2019

Santhosh Narayan - MIT EECS MENG 2019

Thomaz do Nascimento - SFMBA 2019

In collaboration with:

The Monetary Authority of Singapore

Executive Summary 3

Introduction 6

Literature Review 7
Blockchain and insurance - value in smart contracts 7

Industry examples 8
Parametric insurance 9

Key Challenges of the Oracle Problem 11
Information arbitration 11

Single source of information 11
Multiple sources of trusted information 12
Multiple sources mixed information 13
Arbitration mechanism 14
Decision framework 16

Information submission 16

Smart Contracts 17
Cryptocurrency and blockchain overview 17
Smart contracts overview 18
Oracle problem 20

Smart Contract Architecture Design 22
Architecture design 22
Ethereum 23
Discreet Log Contracts 24
Other blockchain technologies 25
On-chain versus Off-chain comparison 26

Proof of concept 27
Ethereum Implementation 27
Results 27

Potential Benefits and Uses Cases 29
Parallel contracts 29
Cooperative self insurance 29

Conclusion 30
Further research 30

References 31

2

Executive Summary
Oracles and smart contracts can create and deliver value for parametric insurance by

eliminating current transactional frictions and opening up new opportunities. The challenges are

both technical and behavioral. The key to success is in navigating these challenges

methodically and making the right decisions in system design and specification.

In basic contract law, a judicial system adjudicates contractual disputes and enforces terms of

the agreement. Meanwhile, smart contracts are enforced by built-in code or in other words,

“code is law.” Smart contracts have the potential to speed up contract execution (i.e.

transactions) and empower individuals to become independent from bureaucracies while

maintaining the reliability of these institutions.

One potential use-case of these smart contracts is in parametric insurance. Parametric

insurance, unlike traditional insurance, revolves around a pre-agreed payout based on projected

loss and probability that is automatically triggered when a parameter is met (e.g. flight delay)

based on inputs from a trusted source. It has logical applications in the flight delay use case

because it can easily be purchased digitally, separately or bundled with tickets, and there are

limited hassles to claim the benefits since it’s paid out to travelers as soon as the delay is

confirmed. Thanks to logical alignment, it also stands to benefit greatly from the use of smart

contracts, which is why this was selected as our focus use case in collaboration with MAS.

A major barrier to ubiquitous smart-contract use is determining how code can acquire

information to process from the real-world; this is known as the Oracle problem. The Oracle

problem can be divided in two parts: 1) arbitration and 2) submission. Arbitration governs the

logic which the Oracle uses to make an objective decision. Submission is the technological

challenge that Oracle faces in securely and reliably obtaining the information. Through the

exploration of these challenges in this project, solutions were found to address each of these

issues.

In the proposed framework to resolve the arbitration problem, the Oracle design follows two

particular dimensions, incentive alignment and trustworthiness. Information can be broadly

3

categorized into three non-exclusive sources: 1) centralized governments, 2) trusted entities,

and 3) permissionless crowdsourced data, with decreasing level of intrinsic trust.

Incentives must be aligned for all parties involved in order for the algorithmic approach to

arbitration to work. In the absence of aligned incentives, parties would almost certainly deviate

from reporting the “true” state of affairs in order to obtain financial gains. The ways in which

alignment can be achieved are through system design and the use of technology. That is to

create competing incentives to counter misalignment and to deploy technologies, such as IoT or

augmented geolocation information that can bypass or calibrate against bad behaviours.

From the trust perspective, the arbitration mechanism can be designed to work with varying

levels of intrinsic trust that characterises the three types of information sources. It is important to

note that whilst the algorithm is objective, the perceived trustworthiness is subjective.

Government information would normally be considered trustworthy but those wishing to

disintermediate centralised control would prefer another source. From the insurers’ standpoint

this subjectivity can be a source of opportunity, utilising smart contracts to create parallel

contracts and products that tailor for individual needs without incurring substantial investment.

Another issue relating to this mechanism is when decisions are made with multiple sources

involved. Trust continues to play an important role but even if there is an identical level of trust,

a decision algorithm is still necessary to arbitrate between competing information. Starting with

the most basic form using simple majority to getting an unanimous decision, all of these remain

subjective to the individuals. Insurers should design the mechanism with market dynamics in

mind.

Commercial Considerations
The use of blockchain and smart contracts in parametric flight insurance is very limited at a

commercial level at this point in time, apart from a few pilots from large insurance companies

and insurtech startups. Hurdles to commercialization include the availability of quality input data

and Oracles, as well as the cost benefit trade-off: it’s unlikely the value to customers of

additional transparency and trust are worth the added cost of running these systems on the

blockchain rather than in a database when customers are purchasing from known insurers with

good reputations.

4

Technical implications
Smart contracts are implemented on blockchain infrastructure, benefiting from the immutability

characteristics of this technology. When using public blockchains, smart contracts make the

rules written in the code transparent and auditable by everybody. Finally, they can also use

crypto assets to settle contract terms. Among several other advantages, smart contract

technology diminishes the friction among the contract participants by executing objective

contracts coded in software that generates deterministic payouts, without the interference of

humans. However, smart contracts also brings some challenges which include the lack of

adoption, level of integration with traditional payment means, scalability and the integration with

the external world outside of blockchain. Feeding data into smart contracts might seem a

straightforward task but it also carries its own challenges. To understand them, it’s necessary to

consider that one of the biggest motivations to use blockchain technologies is the security

accomplished by using its decentralized characteristics. Therefore, the integration between the

blockchain and the external world must be performed in a way that does not compromise the

security achieved by the decentralization. This means that there should exist multiple data

sources, and the communication channels in this interface must be securely encrypted and

authenticated. Another problem related to smart contract implementation is the scalability

limitations of the blockchain infrastructure. Permissionless blockchains, known to provide the

best security given their level of decentralization, are also the least scalable. Such technical

challenges, either on integration or scalability, pose several questions related to the architecture

design of smart contract applications. This work builds on such problem analyses and proposes

some designs to minimize their impact.

5

1. Introduction
Parametric insurance, including flight delay protection, is a compensatory mechanism that uses

pre-agreed parameters to determine the outcome. The EU Flight Compensation Regulation is

one example of this. As technology continues to integrate into every aspect of daily lives, this

paper explores the ways in which Blockchain can be used as an oracle to collect information,

parametrically determine the outcome, and execute the settlements for the agreement.

The main focus of this paper is on Parametric Flight Delay Insurance. This use case has been

developed in collaboration with the Monetary Authority of Singapore (“MAS”), MIT’s Digital

Currency Initiative (“DCI”), and MIT Sloan School of Management (“ MIT Sloan”).

The objective of this paper is to creates a framework that applies blockchain to achieve

multi-party agreement by creating a set of logic experiments to test and explore scenarios

where the Oracle providers have different incentives and preferences. This paper does not

provide a “right or wrong” solution, nor does it define or identify the “source of truth”.

The concept of an Oracle provider is associated to problem with the interface between the

blockchain and the external world, also known as the Oracle problem. This problem comes from

the decentralization nature of blockchain and its applications, such as smart contracts. Whilst

data on the blockchain and those used in smart contracts are inherently secure, external data

are at risk of being tampered at the source. This paper will discuss how technology can tackle

this Oracle problem using technical integration and logical design of the smart contract

application.

The pain points identified in a blockchain oracle can be summaries as the following:

1) What information to collect?

2) Which source to trust and which to trust more?

3) How to securely collect, analysis, and action?

What information to collect depends on the situation and is therefore not the focus of this paper.

Instead to analyse 2 and 3, a generalise multiparty oracle system is broken down into 3 parts: 1)

Input, 2) Process, and 3) Output.

6

“Truth” in this paper’s use case is: whether an event has occurred.

The goal is to understand how an Oracle can be designed to fully integrate each stakeholder

into a seamless compensatory system that allows market dynamics and self-selection to

function without the existing drawbacks of friction and delay.

2. Literature Review
2.1. Blockchain and insurance - value in smart contracts

Insurance as an industry relies on antiquated system with many potential points where

information might be lost or miscommunicated, or settlement times unnecessarily extended. A

prime example is the continued reliance on paper contracts, which are prone to errors and

require human supervision and typically lengthier resolution times.

Blockchain has interesting applications in parametric insurance, both on the data input side,

known as the oracle, as well as the payout side. There are a few cases where blockchain is

being applied in this manner. 1

1 CBInsights Research Briefs. “How Blockchain is Disrupting Insurance.”

7

2.1.1. Industry examples

AXA Fizzy
Most of these cases are pre-commercial. One of the most relevant for this project is AXA’s Fizzy

product. AXA is a large European Insurance company which recently launched Fizzy, a pilot

flight delay insurance product that sits on the public ethereum blockchain. The value proposition

here is in the smart contracts, which act as a simple triggering mechanism and also a

transparent record of the contract details. AXA’s stated goal is to bring more transparency into

insurance thereby increasing customer trust, and overcome a common consumer feat that

insurance companies will try to “trick” consumers. Currently, Fizzy issues payouts in fiat

currencies, but has plans to use ether for payouts in the future. They have experienced 2

blockchain-related challenges around both around the data feeding the smart contracts, “It’s a

lot more complex than expected! Air traffic data is not 100% available nor clean,” alongside

more traditional implementation challenges, “the need to test the flight eligibility is hard to accept

for potential business partners. In traditional insurance, we would insure all flights and it would

be up to the customer to provide the proof of delay.” 3

2 Higgins, Stan. “AXA Is Using Ethereum’s Blockchain for a New Flight Insurance Product.“
3 Clement, Alexandre. “Fizzy.axa Smart Contracts explained.”

8

Ethersic
The other prime examples of this type of product in the market come from Ethersic. This

Switzerland-based insurance platform startup had developed a range of parametric insurance

products that utilize blockchain technology, including hurricane, crop, and flight delay insurance,

though so far the flight delay product is the only one that has been licensed. The products also

use ethereum-based smart contracts, but unlike Fizzy, can be purchased using either fiat

currency or ether. Ehtersic has designed their system to address issues around trust and 4

Oracle data quality: “oracles working with Etherisc will have to stake DIP tokens as an economic

incentive to provide high quality data.” 5

2.1.2. Parametric insurance

To set context, it’s useful to first lay out the differences between parametric and traditional

insurance products. Traditional insurance involves the insured party paying a premium in

exchange for the promise an actual loss from an incident or named peril. To judge that actual

loss requires and investigation and assessment, which informs how much will be paid out after

the event happens. The objective is for the insured party to be “made whole.”

Parametric insurance, on the other hand, revolves around a pre-agreed payout based on

projected loss and probability, and is automatically triggered when a parameter is met (e.g. flight

delay) based on inputs from from a trusted source. It has logical applications in the flight delay

4 Insurance Journal. “Insurtech Startup Etherisc Offers Blockchain-Based Flight Delay Insurance“
5 Ethersic. “Oracles: How Is Information Quality Ensured?”

9

use case because it can easily be purchased digitally – separately or bundled with tickets, and

there are limited hassles to claim the benefits, since its paid out to traveler as soon as the delay

is confirmed.

Table 1: Comparison of Traditional and Parametric Insurances 6

 Traditional Insurance Parametric Insurance

Payment

Trigger

Payment triggered by actual loss of

or damage to a physical asset.

Payment triggered by event occurrence

exceeding parametric threshold.

Recovery Reimbursement of actual loss Pre-agreed payment based on event or

index value

Basis Risk Generally smaller:​ policy

conditions, deductibles and

exclusions

Generally larger:​ correlation of chosen

index with actual event, actual payout vs.

loss sustained.

Note:​ Basis risk cannot be fully eliminated

in parametric insurance but can be

reduced using more sophisticated trigger

or payout mechanisms

Claims

Process

Generally slower:​ complex and

based on risk adjuster assessment

post-loss

Generally faster:​ Transparent and

predictable because it’s based on a

parameter, no need for assessment,

leads to quicker settlement

Term Typically annual, less common to

see multi-year deals

One-off or multi-year

Structure Uses standard insurance contract

wording so limited customization

Parametric contracts are tailored for

index, payout, and client so highly

customizable

6 ​SwissRE blog post “What is Parametric Insurance”, Aug 2018
https://corporatesolutions.swissre.com/insights/knowledge/what_is_parametric_insurance.html

10

https://corporatesolutions.swissre.com/insights/knowledge/what_is_parametric_insurance.html

3. Key Challenges of the Oracle Problem
The Oracle problem can be divided in two parts: 1) arbitration and 2) submission. Arbitration

governs the logic with which the oracle uses to make an objective decision. Submission is the

technological challenge that oracle faces in securely and reliably obtaining the information.

3.1. Information arbitration

One key aspect of the Oracle problem is the arbitration - the decision process that determines

the “truth” - i.e., whether an event took place. As oracle and smart contract operates objectively

by following lines of computer code, it does not determine the actual truth of the matter but

rather it decides that based on the instructions and formula given to it by the programmer.

3.1.1. Single source of information

In the minimum application where there is only one information source, the arbitration problem

is avoided. The Oracle system will process the information and execute the smart contract in

accordance with the pre-agreed instructions.

In the absence of confirmatory source of information, for this Oracle to be trusted it implies that

the one information source must be “trustworthy” and accurate from the perspective of the

beneficiary of the smart contract. Note: accuracy is defined as being representative of the true

state of event. Some examples are: governments agencies or trusted information providers.

The trustworthiness of a source is subjective insofar as the beneficiary is concerned. The

individual is presumed to only enter this type of contract if the person is wholly satisfied with the

information this one source will provide.

11

3.1.2. Multiple sources of trusted information

Arbitration becomes a potential problem where there are multiple sources of information and

agreement is necessary. When making decisions the Oracle has no subjectivity. It is therefore

necessary to develop an algorithm that will determine how the information is processed and

which is to be accepted by the smart contract code.

To illustrate this issues, first consider an Oracle with two trusted sources:

Information received from both sources are considered equally trustworthy and accurate, i.e.,

neither is implicitly more representative of the true state of event than the other. An impasse

occurs if the information are accurate but differs from one and other due to imprecision, that is

the sources are accurate but a) the information are not identical, and b) the different states

represented straddle a go/no go outcome according to the parameters of the smart contract.

E.g., Compensation is triggered if flight is delayed by 2:00:00hr

Sources are accurate: c.2:00:00hr but imprecise ±0:00:01

a) Source A: 2:00:01 (compensate); Source B: 2:00:02 (compensate) ⇒ compensate

b) Source A: 1:59:58 (not comp.); Source B: 1:59:59 (not comp.) ⇒ not compensate

a & b) Source A: 2:00:01 (compensate); Source B: 1:59:59 (not compensate) ⇒ ​impasse

Now consider the same issue with three or more trusted sources:

The existence of at least one contrary perspective to the majority will always require an

objective arbitration. It is not immediately clear whether the majority is reflective of the true state

of the world or that the minor is correct.

12

3.1.3. Multiple sources mixed information

The introduction of untrusted sources brings additional challenges: a) accuracy of the

information, and b) incentives for foul play. The main example of untrusted sources considered

in this paper is user generated information or crowdsourced data.

Firstly unlike trusted sources that are implicitly accurate, untrusted sources may or may not be

accurate. It is therefore necessary to design an arbitration mechanism that will result in an

agreeable state of events.

Secondly on incentive, when an individual has the ability to alter the outcome in their favour by

changing the input, they are like to do so. Consider the use case of flight delay insurance:

a) assuming that every passenger will report their landing time to the oracle, irrespective of

their stake in the insurance, i.e., insured or uninsured

b) the insurer take no action to steer the outcome

c) every uninsured passenger is interested in providing accurate information

d) every insured passenger is incentivised to maximise financial return by reporting a delay

as soon as one passenger enters into the insurance contract the Oracle can no longer be relied

on to always provide the truth. This because the Oracle cannot return an “on time” output.

Below are three possible outcomes:

1) no one is insured, accurate information is provided but no outcome is necessary

2) at least one person is insured ⇒ impasse or delayed if ture

3) everyone is insured, report of delay is certain and unanimous irrespective of the true

state of event

with self interest in play and in the absence of an agreeable arbitration mechanism to resolve

the impasse, 3) where everyone will obtain insurance and report a delay is the likeliest and most

stable outcome.

13

3.1.4. Arbitration mechanism

Given the objectivity of blockchain Oracle, the onus is on the contracting parties to pre-agree an

acceptable algorithm for decision making. As illustrated, where there are multiple sources of

information input, impasse is possible when trusted sources disagree or when untrusted

sources are incentivise to game the system with false information.

One way to break an impasse is to apply a formulaic approach. Here are some examples:

1. Majority decision

- the simplest way to arrive at an agreement is by going with the most vote

2. Average

- if the information is on a continuous spectrum, the aggregated data can be

averaged and used as the output benchmark

3. Supermajority

- agreement is reached when x% of the input sources agree, where x>50. The

excess percentage above simple majority adds confidence to the outcome in a

trusted environment

4. Weighted majority

- where a given source is inherently more trustworthy, weighting can be assigned

to differentiate the sources. The trustworthiness can be a function of technology,

location, reputation, etc. e.g., from the use case, the Civil Aviation Authority of

Singapore is the definitive source of information on arrival time versus a

commercial information supplier, e.g., FlightStats.com, or passengers self

reporting

5. Unanimous

- unanimity can be made a necessary condition for agreement

Whilst these approaches can be used effectively to reach and enforce an agreement in a trusted

environment, none addresses the incentive issues regarding untrusted sources. Two methods

are proposed to address this:

1. System design

- By clearly identifying the different incentives within a given application, it is

possible to design the contract that minimises or mitigates potential conflicts.

14

From our use case: a two-sided market can be created with (insured) individuals

seeking to genuinely protect against delays; and (uninsured) others gambling on

on-time arrival, to offset the incentives to lie by rewarding both outcomes and

avoid collusion.

2. Technology

- The growing installed base of IoT and nearly ubiquitous ownership of

smartphones, spatial and temporal data can be cheaply and easily collected. By

integrating technology into the data collection this opens up new opportunities.

Building on the use case:

- IoT can be implemented at the airport gate to monitor traffic over time.

When passengers disembark, they create a sudden surge of traffic

through the gate, and when properly calibrated this can reliably be use as

a data source to indicate arrival time

- Cell phone signal can be use to timestamp arrival as most passenger will

switch on their cell phone or disable Airplane Mode on arrival. This

method is particularly effective when combined with geolocation data to

calibrates for anomalies such as when people switch on their phones after

a delay, either out of habit or with the intention to cheat the system

15

3.1.5. Decision framework

Each functioning Oracle is different depending on the level of inherent trustworthiness, incentive

alignment, and arbitration mechanism. Below is a proposed logical framework for consideration

when creating an oracle/smart contract system:

3.2. Information submission

The submission problem is composed of the challenges involved in capturing information from

potentially multiple data sources and feeding it into blockchain. This part of the Oracle problem

typically involves technological problems such as the encryption and signature of data sent by

the Oracles. Another problem is the decentralization of the datasources. The Ethereum platform

offers some basic tools to handle this problem but more security might be needed particularly if

there are multiple data sources and a low level of security on each of them. Other platforms

offer services in the market to overcome those issues - Chainlink is one of those. This platform

provides encrypted and secure mechanism to convey data from the data sources to the

Ethereum smart contract, using SGX chip technology from Intel. This technology provides a

16

hardware secure environment to execute software code. This security mechanism relies on the

trust of the participants on the technology developed by Intel.

4. Smart Contracts

4.1. Cryptocurrency and blockchain overview

Crypto currencies and blockchain have been a hot topic in the past 4 years. This story started in

2009 when a person or a group of people under the the pseudonym of Satoshi Nakamoto,

published the seminal paper, Bitcoin - A Peer-to-Peer Electronic Cash System . A couple of 7

months later, they launched the first net with the implementation of this protocol. The original

goal of this system was to implement a currency that it is not dependent on trusted third parties

to address the double spending problem. The main component of this system architecture is the

blockchain, which allows every participant of the network to check and audit the system by

inspecting the public ledger composed of blocks of transactions. This is a completely different

paradigm in which the security is based on the decentralization of the verification task, resulting

in incredible system robustness. These characteristics are accomplished by having an intricate

consensus mechanism in which miners generate blocks that define the sequence of

transactions and verifiers (or full nodes) who validate the compliance of the miners’ work

according to rules coded in software . One specific miner is compensated with crypto coins for 8

their computational effort to generate blocks in a race alongside other miners. On the other side

of this consensus game, full nodes who are not interested in having their coins inflated, follow

the rules written in software implementation while validating the block transactions. This

incentive structure creates a "mutual assured destruction" setting in which miners and full nodes

lose if either decide to abandon the consensus or software rules in their own benefit. Therefore,

to change the rules it is necessary to convince almost all network members, including miners

and full nodes, that the software must be updated. This is the intricate but robust consensus

mechanism achieved in a sufficient distributed blockchain-based network. It is interesting to

note that the more distributed it is, meaning more participants, the more decentralized the

network is. The increase of the decentralization makes any change in the consensus protocol

more difficult, given the need to convince all players in the network to accept them. As a result,

the network gets more robust with size in the sense that transaction history will not change

7 Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System.”
8 Wood, Gavin. "Ethereum: A secure decentralised generalised transaction ledger."

17

easily. These conclusions are explored by the several applications, smart contracts being one of

those, implemented on top of the blockchain technologies.

4.2. Smart contracts overview

Contracts in real life are agreements created between agents, individuals or legal entities, that

engage in some sort of interactions that in most of cases involves transfer of assets as a

compensation for services or products exchange. Contracts are formalized by documents that

describe the conditions in which services and products should be transferred and how assets

should be sent and received by the parts involved. Well-defined contracts accurately describe

all conditions and possible scenarios in which transaction can occur and, moreover, they also

do not leave any ambiguity regarding to the contract settlement. It is interesting to note the

resemblance of a well-defined contract and a well-written software code. The aim for software

implementation is to generate a code that collects inputs and processes them to generate

outputs in a deterministic way, handling all types of inputs properly and producing coherent

outputs according to intent of the software developer. In fact, legal language is designed to

systematize human actions and conditions to provide deterministic interpretations. This parallel

was first realized by Nick Szabo, who has a background in law and computer, in his paper

"Formalizing and Securing Relationships on Public Networks" . In this paper, the author 9

explores the possibility of using software, networks and cryptography to formalize and secure

transactional relationships between parties who decided to enter in a contract agreement. The

benefits of such systems are quite clear and those include objective clause interpretation rather

than subjective human and manual processing, and also automated contract settlement. At this

point, it would be hard to implement the ideas from this paper without using a trusted third party.

Moreover, since financial assets such as banks are organized in closed loop consortia and

under strong regulation, it was challenging to integrate cryptographically secure software

contracts with traditional payment systems.

This scenario began to change with the emergence of cryptocurrencies and blockchain

technologies. The ability to transfer crypto assets without the need of a trusted third party

triggered an interest in developing infrastructure to implement smart contracts. In addition, the

immutability and decentralized characteristics of blockchain technology are highly suitable for

9 Szabo, Nick. “Formalizing and securing relationships on public networks.”

18

implementing such transactions agreements with transparency and security for all parts

involved. Consensus mechanisms play a important role in the underlying foundation of a smart

contract since one of the most important aspects of a contract is the fact that it registers the

mutual agreement beforehand and prevents participants from changing it to benefit themselves

as time goes by and information about the future becomes available. That is the reason that

contracts are signed and in some cases registered by a notary. With blockchain technology,

smart contracts benefit from an open and public notary enforced by the decentralization of the

network.

There is a long list of benefits from using smart contracts. First, transactions are more

transparent since contract code is publicly stored in the blockchain. Second, contract settlement

is processed automatically, avoiding cumbersome paperwork procedures and painful claim

processes, particularly when there is an asymmetry on the financial execution capacity of the

contract. Since smart contracts have rules coded in software, contract execution is performed in

a objective way according to the rules agreed beforehand. Finally, smart contracts can benefit

from the cryptocurrency implementation to command automated asset transfers as a means of

compensation for contract participants as conditions are met. This provides completeness to

such implementation and makes the use case for smart contracts on top of cryptocurrencies

and blockchain technologies very attractive.

On the other hand, smart contracts bring a comparably long list of challenges. Mass adoption,

network effects, underlying technology issues, and security, among others, are the root of

various obstacles that get in the way of broad usage of smart contract technology. Below is a

non-exhaustive list of the main challenges of smart contract implementation:

1. Contracts in code can be difficult to implement. Certain conditions that are easy to

understand and process using "conventional human sense" can be difficult to translate

into hard lines of program code.

2. Cryptocurrencies are not stable and the vast majority of people prefers to deal with

traditional payment means, e.g. fiat currency.

3. Cryptocurrencies are not well understood and in most geographies are not properly

regulated. This means users are not incentivized to adopt them.

19

4. The decentralized consensus mechanism does not scale very well. To give a sense of 10

this issue, the current Bitcoin mainnet is able to process on average, 7 transactions per

second. Conversely, traditional credit cart operator networks can process more than

50,000 transactions per second. The process to determine the next block - mining - and

the verification mechanism are intense involve high levels of and processing capacity

and network communication. Therefore, highly decentralized networks tend to not scale

well.

5. Interface between blockchain infrastructure and real world can be tricky. This problem is

a important problem and it is one of the motivations of this paper. It is often referred to as

the Oracle problem and it involves security and design aspects. We will double click on

this problem in the following sections.

In spite of challenges mentioned above, smart contracts promise to generate value to users,

achieved through the evolution of technology and design implementations that circumvents the

obstacles of deploying smart contracts on the blockchain infrastructure.

4.3. Oracle problem

At this point, we will dive into smart contracts at a higher level of detail. It was previously

mentioned that they are pieces of code that initiate software as form of real world contracts.

Where is that software executed? To answer that question, it is necessary to add more

information about the underlying technology of smart contracts: the blockchain. When miners

are creating blocks with transactions, they are creating a sequential and historical list of data

that consists of a chain of blocks. All miners and full nodes, or verifiers, posses a copy of this

chain of blocks that was validated and agreed to be the single source of truth by the consensus

mechanism. In simple terms, it is reasonable to think of the blockchain as a group of computers

that are executing a consensus software on top of a replicated database composed by a chain

of append-only databases. It is on top of this infrastructure that smart contracts are deployed.

The script of the contract and the data used by the script are stored in this replicated chain of

blocks. Whenever the smart contract must be executed, during the mining process, the script

software is read from the local chain, the code is run and finally the output of this execution is

stored on the next block to be appended on the chain. It is important to mention that the

10 Anamika Chauhan et al. “Blockchain and Scalability.”

20

outcome of this contract execution will be replicated to all other nodes of the network. In this

process, it is important to understand which node will be responsible for the contract execution.

In reality, multiple nodes will execute this contract. Given the decentralized nature of the

blockchain, several miners will compete to generate the next block, meaning that if a smart

contract needs to be executed on the next block, several mining nodes will execute it in hopes

that they will win the race for producing the next accepted block. Therefore, the script of the

smart contract must output the same results even though it’s being executed by different miners

asynchronously: this means that the smart contract execution must be decentralized and

consistent. Considering that all miners have the same copy of the blockchain and that the smart

contracts will collect data only from the blockchain, reaching consistency is not a very

challenging goal. However, an ability to integrate with the world outside blockchain is a basic

requirement to implement almost all real world smart contracts. This integration generates some

problems. Let's list the most important ones:

● Data integrity - Unlike blockchain data, external chain data inputs do not have their

consistency and immutability guaranteed by the consensus mechanism. This means that

multiple executions could potentially output different results.

● Security - Since smart contracts applications command funds or asset transfers, the

integration between the real world and the blockchain must be tamper proof so that

malicious attacker are not able to change data that smart contracts are using to execute

in the blockchain.

● Datasource decentralization - Given the level of security generated by the

decentralization, smart contracts are expected to provide the same security standard

end to end. This means that users of a decentralized smart contract application, in short

DApp, are not willing to compromise the level of security achieved by this configuration

by integrating with a single external data source that might be vulnerable to tampering.

Those are the challenges of the constitute the "Oracle problem". Let's consider the example of a

smart contract application for flight delay insurance (“FDI”), the use case raised in Section 3.

This contract will compensate passengers, who paid a premium fee, in the case that their flight

is delayed. Conversely, this contract should return the funds to the insurer in the case that the

flight is not delayed. There are some important questions in this application related to the oracle

problem: Who will inform the contract that the flight is delayed? How will this information be

conveyed into the blockchain while still preserving the security premisses? The figure below

21

shows a diagram of the oracle problem. Each block represents a different miner node that could

potentially start the FDI execution - eventually each of these nodes will connect to the various

flight delay datasources.

Oracle problem at FDI DApp

5. Smart Contract Architecture Design

5.1. Architecture design

Given the scalability challenges and oracle problem discussed in the previous sections, the

architecture design for a smart contract application is a critical consideration. In this project, we

explored two types of architectures for smart contracts which are listed below:

1. On-chain - This architecture is characterized by the deployment of the smart contract

script as part of the blockchain data, meaning its execution will be done by the miner

nodes. Ethereum is a blockchain infrastructure that provides comprehensive support to

implement smart contracts and is the preferred choice for DApp developers. 11

2. Off-chain - It is also possible to implement smart contract code outside the blockchain

infrastructure. The main concept of this architecture is to separate the processing and

11 Vujičić, Dejan et al. “Blockchain technology, bitcoin, and Ethereum: A brief overview.”

22

verification parts of a smart contract. The processing part is executed outside the chain

while verification is performed on chain through the validation of signatures and pre-built

transactions. This idea was created by Thaddeus Dryja at the MIT Digital Currency

Initiative. 12

5.2. Ethereum

Ethereum is well-known blockchain infrastructure characterized in particular by its smart

contract support. This platform offers a vast set of tools to develop and deploy smart contracts

on top of its native currency token, the Ether. In fact, Ethereum offers a Turing complete

programming language to develop smart contract code which also includes an API that allow

interface software to call contract functions inside the Ethereum blockchain. This comes in

handy to address the consistency part of the Oracle problem. The figure below shows a diagram

with the representation of such interfaces.

Ethereum external interface diagram

Given the resources available on Ethereum to develop smart contracts, very complex logic can

be implemented. This is an advantage since real world contracts are rich in clauses and

complexity. However, this introduces two problems. The first is associated with the scalability

issues of the blockchain. The comprehensive nature of the Ethereum platform amplifies the

performance limitations of this technology. The second problem is related to cost of the

execution of the smart contract. As discussed previously, miners are compensated by the their

work on block generations. Since smart contracts in Ethereum are executed on-chain, this

12 ​ Dryja, Thaddeus. “Discreet Log Contracts.”

23

means that miners will have to execute this code and tie it to the next block generation. This

process is paid and it is measured in Gas which is a subunit of Ether.

5.3. Discreet Log Contracts

An alternative approach to execute smart contacts is the Discreet Log Contracts, in short DLC. 13

The central idea of DLC is to compute ahead of time all the possible transaction outputs of a

contract and distribute those transactions templates to the contract participants. Let's analyse

one contract example illustrated in the figure belows, extracted from one Thaddeus Dryja's DLC

presentations. This contract is a fictitious betting between Alice and Bob about the weather in

the future. There are three possible outcomes which are sunny, cloudy and rainy. An Oracle is

responsible for providing the weather information on the betting day. The figure shows the

payouts depending on each Oracle outcome. The core construction of DLC uses Schnorr

signatures in its signature scheme. The construction explores the fact that Alice and Bob can

compute only the signature of the set of transactions that correspondent to Oracle information

output, making only this specific transaction broadcastable and spendable. As security

provision, in case Alice or Bob tries to cheat by sending the wrong transaction, the other part

can immediately transfer all funds to himself or herself using a revocation key. The full details

can be found in the reference cited. 14

13 Dryja, Thaddeus. “Discreet Log Contracts.”
14 Dryja, Thaddeus. “Discreet Log Contracts.”

24

Discreet Log Contract scheme diagram - Figure from Thaddeus Dryja presentation

This creative mechanism allows the implementation of the contract logic to be done outside the

blockchain and therefore not constrained by the restrictions of this environment. The drawback

of DLC is the fact that it is necessary to pre-compute all possible outputs beforehand in a

discreet manner. Moreover, in the case that a contract generates multiples output possibilities

potentially because of multiple interactions, the transaction anticipation can become

cumbersome. The limitation here is not the amount of pre-computed transactions, since these

calculations are performed off-chain, but the complexity of your contract scheme.

5.4. Other blockchain technologies

Nowadays there is an explosion of blockchain technologies. It seems that almost daily there is a

new platform with new features, promising to solve Bitcoin and Ethereum scalability issues while

maintaining their level of security and decentralization. Most notably, permissioned blockchains

became quite popular in the corporate world particularly in same industry companies organized

in a consortiums. Permissioned blockchains require permission to participate and therefore they

can use technologies and constructions that scale very well. However, this benefit comes at

cost of decentralization and a corresponding increase in the risk of the blockchain being

25

tampered with or censored. Some permissioned blockchains, such as R3-corda, were simplified

to the extent that the own providers admit that they are no longer blockchains in the classical

sense.

Other public projects, such as Algorand, present very interesting cryptographic technologies but

have not reached the level of network distribution to be considered safe from the

decentralization perspective. Those projects might succeed in the future and maybe will

displace Bitcoin and Ethereum as top 2 biggest blockchains, but this is not the current reality.

Given the fact that permissioned blockchain are specific and perhaps not suitable to mass

market applications, and the fact that other blockchain projects are still incipient, this project

concentrated in analysing only Bitcoin and Ethereum blockchains.

5.5. On-chain versus Off-chain comparison

This session presents a summary table with the pros and cons of DLC and Ethereum smart

contracts.

Technology Pros Cons

DLC ● Scalable

● Better performance

● Cheaper to operate

● Hard to develop

● Complex

Ethereum ● Easy to develop

● Allows highly complex logic

● More expensive due to cost

paid to miners

● Does not scale well

26

6. Proof of concept
6.1. Ethereum Implementation

As part of this project, our team developed a proof of concept for a flight delay insurance

application, FDI. This prototype was developed in Ethereum and uses a Javascript web

application to provide the interfaces for the three main stakeholders of this application:

passengers, insurance providers, and Oracles. Passengers can access this application using

either desktop or mobile internet browser. The interface between the web application and

Ethereum blockchain is performed by crypto wallets - we used Metamask for the desktop and

Coinbase for mobile. This application implements the workflow of the parametric flight delay

insurance, as described in Section 3. All fund transfers occur on the Rinkeby Ethereum testnet.

This testnet uses test Ether but the environment is very similar to the one of the actual main net.

The main goal of this implementation is to discover and explore what is involved in

implementing a smart contract application. Basically, we implemented a smart contract in

solidity, which is the Ethereum smart contract programming language, and this prototype

followed the on-chain approach described earlier. It also incorporated digital signatures on the

Oracle messages to increase the security of the Oracle interface.

6.2. Results

The implementation of the parametric insurance application covers the basic workflow involved

in this use case. There are essentially three stakeholders, who are the passenger, insurance

provider and oracles. In a real world application, an oracle should not be an user but an api

integration or a system. However, for the purposes of this prototype, this stakeholder was

implemented as a system user. The workflow of the application consists on the following basic

steps:

● Insurance provider creates a flight delay insurance coverage product.

● Passengers can navigate through a list of available coverage products, select one flight

coverage and by the insurance using Ether crypto coin as payment means. This

operation can be done either on desktop or mobile.

27

● One or more oracles can input flight delay information. Each oracle input is computed

internally by the smart contract and when the total number of oracles are done with the

information feed, the payouts are triggered. Either to send all contract funds to the

insurer in case that there is no flight delay or to indemnify passengers using the payout

parameters of the contract.

● All payouts are processed and the contract is finalized.

Below are some screenshots of this proof of concept.

Desktop application

28

Mobile application

7. Potential Benefits and Uses Cases
7.1. Parallel contracts

Building on the information arbitration discussion, in the case where there is only one source of

information, it can be argued that government agency is generally trustworthy. However, as it is

not inconceivable that some individuals will consider certain governments less reliable than

commercial information provider. With blockchain and smart contracts, one solution is for

insurers to set up parallel contracts using different Oracle to determine the outcome and let

market forces and self selection decide what is more acceptable for the insured.

7.2. Cooperative self insurance

One key significant advantage of blockchain is its multi party consensus and read/write

permission. Farming cooperative is a well study and implement insurance scheme that allows

many farmer in the same region to self-insure as a collective. This differs from the current use

case by the fact that the insurer and insured can be the same. As addressed in the information

arbitration section, this offers a unique test case on how system design and technology can

influence the design of the Oracle system and insurance terms.

29

8. Conclusion
Blockchain and Oracles have the potential to transform the world, where multiple parties are

involved in agreeing and settling a transaction that are based on reportable parameters which

define a state of the world. More specifically, this paper has demonstrated how the technology

can be implemented to bring together different sources of information and stakeholders to

create a compensation scheme that eliminates the drawback of friction and delays.

Insofar as it is possible, there are logical and technical challenges in designing and

implementing such a system. As this technology does not offer subjectivity, arbitration

algorithms, system design, and integration with IoT and other technologies are necessary to

address the decision impasse and incentive issues. A decision framework is proposed to aid the

designing of an Oracle system given a scenario of varying trust and incentive alignment.

8.1. Further research

Further research on understanding the the impact of “instantaneity” on trust and incentive would

add great value, especially to commercial entities. Here are two examples to consider:

1) Existing insurance generally have a 24-hour “Waiting Period” to avoid claimants signing

up knowingly cheating the system and making a claim. Building on the use case, with

many airlines now offering in-flight internet connectivity, how should the oracle system

respond to an insurance purchase by a passenger that is on a flight that is already

delayed? How much additional data points do the oracle need to avoid this issue?

2) Current parametric flight delay insurance uses a set of arbitrary cut-offs to determine

compensation payment. This incentivises the airline to “beat the clock” by trying to reach

the destination minutes earlier than each cut-off to save cost without necessarily making

best effort to make up for lost time. One reason for this limitation could be the enormous

resource required for each bespoke compensation if a formulaic approach is applied

widely. This is a trivial problem for smart contract. How will the application of smart

contract change the incentive for a more punctual transportation network?

30

9. References
Anamika Chauhan et al. “Blockchain and Scalability.” 2018 IEEE International Conference on

Software Quality, Reliability and Security Companion

Blocksplain. “Blockchain speeds & the scalability debate.” Feb 28, 2018.

https://blocksplain.com/2018/02/28/transaction-speeds/

CBInsights Research Briefs. “How Blockchain is Disrupting Insurance.” Jan 10, 2019.

https://www.cbinsights.com/research/blockchain-insurance-disruption/

Clement, Alexandre. “Fizzy.axa Smart Contracts explained.” Medium. June 13, 2018.

https://medium.com/@humanGamepad/fizzy-axa-smart-contract-explaind-740df52894fd

Vujičić, Dejan et al. “Blockchain technology, bitcoin, and Ethereum: A brief overview.” 17th

International Symposium INFOTEH-JAHORINA, 21-23 March 2018.

https://www.researchgate.net/publication/324791073_Blockchain_technology_bitcoin_and_Ethe

reum_A_brief_overview

Ethersic. “Oracles: How Is Information Quality Ensured?” Medium. Dec 12, 2018.

https://blog.etherisc.com/oracles-how-is-information-quality-ensured-646f2f41f605

Higgins, Stan. “AXA Is Using Ethereum’s Blockchain for a New Flight Insurance Product.“

Coindesk. Sept 13, 2017.

https://www.coindesk.com/axa-using-ethereums-blockchain-new-flight-insurance-product

Insurance Journal. “Insurtech Startup Etherisc Offers Blockchain-Based Flight Delay Insurance“

Oct 30 2017. ​https://www.insurancejournal.com/news/international/2017/10/30/469647.htm

Szabo, Nick. “Formalizing and securing relationships on public networks.” First Monday, 2(9),

1997. ​https://ojphi.org/ojs/index.php/fm/article/view/548/469

31

https://blocksplain.com/2018/02/28/transaction-speeds/
https://www.cbinsights.com/research/blockchain-insurance-disruption/
https://medium.com/@humanGamepad/fizzy-axa-smart-contract-explaind-740df52894fd
https://www.researchgate.net/publication/324791073_Blockchain_technology_bitcoin_and_Ethereum_A_brief_overview
https://www.researchgate.net/publication/324791073_Blockchain_technology_bitcoin_and_Ethereum_A_brief_overview
https://blog.etherisc.com/oracles-how-is-information-quality-ensured-646f2f41f605
https://www.coindesk.com/axa-using-ethereums-blockchain-new-flight-insurance-product
https://www.insurancejournal.com/news/international/2017/10/30/469647.htm
https://ojphi.org/ojs/index.php/fm/article/view/548/469

Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System.” 2009.

https://bitcoin.org/bitcoin.pdf

Dryja, Thaddeus. “Discreet Log Contracts.” MIT Digital Currency Initiative. May 1 2018.

https://static1.squarespace.com/static/59aae5e9a803bb10bedeb03e/t/5a85cf21e4966bb735a9f

757/1518718768309/discrete+log+contracts.pdf

Wood, Gavin. "Ethereum: A secure decentralised generalised transaction ledger." Ethereum

Project Yellow Paper. 2014. ​https://ethereum.github.io/yellowpaper/paper.pdf

32

https://bitcoin.org/bitcoin.pdf
https://static1.squarespace.com/static/59aae5e9a803bb10bedeb03e/t/5a85cf21e4966bb735a9f757/1518718768309/discrete+log+contracts.pdf
https://static1.squarespace.com/static/59aae5e9a803bb10bedeb03e/t/5a85cf21e4966bb735a9f757/1518718768309/discrete+log+contracts.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

	WG18-19OraclesCover.pdf
	Untitled

	Title: Oracle for Smart Cities
With Use Case:
Parametric Flight Delay Insurance
	Authors: Authors: James Fok - SFMBA 2019, Mark Adams - MBA 2019, Santhosh, Narayan - MIT EECS MENG 2019, and Thomaz do Nascimento - SFMBA 2019
	Keywords: Keywords: Oracles, Smart cities, Parametric Flight Delay Insurance
	Member company: Blockchain Lab Program
2018-2019 Working Groups Cycle
Taught by N. Narula, G. Gensler, S. Johnson, and M. Casey
Member Company: Monetary Authority of Singapore
Project Group: Trusted Oracles for Smart Cities

