
Massachusetts Institute of Technology

Media Lab’s Digital Currency Initiative

Sloan School of Management

Benjamin Celermajer, Nicholas Swindell, Will Lopez-Cordero 12-May-2019

1

15.S68 BLOCKCHAIN LAB

UTREEXO

Executive Summary

Cryptographic accumulators have been explored for decades, but in Bitcoin’s 10 year

existence, no viable solution has been identified to apply accumulators to produce a

representation of the Bitcoin current state and reduce the data requirements of nodes. The

primary reason for this is the need for proofs to identify membership to the accumulator, bridge

nodes to communicate with non accumulator aware transactions and updating proofs in the

accumulator as the state changes. UTreeXO is a solution developed by Tadge Dryja of the MIT

Media Lab’s Digital Currency Initiative that has designed a solution that seemingly has met a

lot of these requirements in an efficient way.

UTreeXO is a dynamic hash based solution to reducing the data requirements of running a fully

validating UTXO blockchain node (e.g. Bitcoin). Through a novel approach to swaping deleted

leaves or branches with new leaves and branches within Merkle Trees, UTreeXO manages to

reduce a Bitcoin full node data requirements from 3GB to under 1KB.

If Bitcoin full nodes can be run in under 1KB it significantly improves the ability of users to

run their own full node on mobile devices, rather than downloading SPV wallets or third party

provider wallets. This has significant implications for the distribution and decentralization of

UTXO blockchains, with the potential to attract thousands of customers that otherwise would

not have owned and operated full nodes. Further, by owning and operating a full node, users

will benefit from improved security and privacy when compared to SPV or third party wallets.

It is worth noting that UTreeXO is still a code in development. There are significant hurdles

that are required to be overcome before it is operational and functioning to its potential. Some

of these include the existence of multiple bridge nodes to protect the network, the existence of

many UTreeXO aware nodes to fully benefit from storing proofs, increased peer review of the

UTreeXO code and greater stability of the code (still many improvements that can be made).

Benjamin Celermajer, Nicholas Swindell, Will Lopez-Cordero 12-May-2019

2

Contents
Executive Summary ... 1

Introduction .. 3

Blockchain size solution review .. 5

Sharding ... 5

Child blockchains... 5

Accumulators ... 6

Hash based accumulators ... 6

Dynamic Accumulators ... 7

UTreeXO – A hash-based solution to blockchain data storage ... 7

Cryptographic solution – A Dynamic Merkle Tree ... 8

Merkle Tree proofs .. 8

Adding leaves... 9

Deleting leaves ... 10

Operationalizing UTreeXO .. 12

UTreeXO Architecture... 12

UTreeXO aware nodes ... 12

Bridge node .. 13

Architecture.. 14

UTreeXO Advantages .. 14

UTreeXO Disadvantages ... 15

UTreeXO code repository current state ... 16

Creating a wallet .. 17

Code contributions ... 18

Conclusion ... 20

Benjamin Celermajer, Nicholas Swindell, Will Lopez-Cordero 12-May-2019

3

Introduction

The Bitcoin network was founded in January 2009 by person(s) who operated under the

pseudonym “Satoshi Nakamoto”. As an opensource network, the Bitcoin code is constantly

iterated and upgraded to improve its operations and efficiency. Bitcoin is currently on version

0.18 and its Github has over 20,000 commits from over 600 contributors. Despite all this work,

one problem that has persistently challenged Bitcoin is its ability to scale.

Bitcoin’s most commonly discussed scaling challenge is its low transaction throughput. One

of the key limitations that prevents higher throughput is that every transaction needs to be

approved and validated by every full node on the network. For Bitcoin, by design the

transaction limit has remained low due to the network’s 1MB block sizes. However, rather than

seeing this as restricting the number of transactions, many consider it a mechanism to regulate

the amount of data being broadcast to the network.

Bitcoin has many powerful attributes that make it an attractive digital commodity, perhaps none

more so than the promise of self-managed digital custodianship. The most secure way to self-

custody Bitcoin is to download a Bitcoin full node which has the information of every account

of every user in the ecosystem. This information is stored as a collection of all the Unspent

Transaction Outputs (UTXOs) that have been created since January 2009. Today, this amounts

to approximately 200GB of data that must be downloaded. Under current circumstances, this

is only going grow as Bitcoin’s price increases and becomes more usable as a medium of

exchange. Thankfully, network users are not required to store the whole 200GB, but rather only

the current state of the network which only shows who owns what right now (currently

approximately 4GB but also growing).

Figure 1 - Bitcoin blockchain size (blockchain.info)

Benjamin Celermajer, Nicholas Swindell, Will Lopez-Cordero 12-May-2019

4

Figure 2 - Number of UTXOs in the Bitcoin current state (statoshi.info)

Whilst the size of the history is an issue, the much larger issue is the growing size of the current

state. As the data storage requirements continue to grow, it inhibits users from running a full

node on their mobile devices, PCs and other hardware. As the current state of the blockchain

gets too big for users to store on their personal devices, it can place a strain on Bitcoin’s (or

any other blockchains) distribution of nodes. The consequence is higher centralization of

validators and thus higher potential of collusion and network corruption (it is easier to collude

between 10 Full nodes than 100).

UTreeXO plans to specifically address the issues plaguing the growing size of the current state.

It does so through the use of a hash based dynamic accumulator that utilizes Merkle trees to

create a representation of the UTXO set in under 1KB. With UTreeXO, users will not need to

store the full set of UTXOs currently in the network, but rather hash(es) that represent the

current state along with proofs of the UTXOs that relate to their wallets. For the Bitcoin

network, the current 55m UTXO set is represented in a maximum of 27 Merkle roots (864B at

32B per hash).

Benjamin Celermajer, Nicholas Swindell, Will Lopez-Cordero 12-May-2019

5

Blockchain size solution review

Sharding

Sharding is a mechanism for partitioning databases and has been around since the 1990s. As

the age of information was booming traditional databases were becoming tough to manage,

costly to run and slow to query. Sharding was a method that separated large databases into

smaller, faster and more manageable pieces called ‘data shards’. These data shards can then be

distributed across more manageable and less expensive servers.

This theory has recently been applied to come blockchains with some success. To shard a

blockchain there have been two primary approaches investigated:

• Sharding processing – the easier of the two solutions, each shard has its own transaction

verifiers and block producers who still maintain the full current state of the blockchain.

Once a shard produces a block, the information is collated by parallel subcommittees

and shared with all the other shards. Whilst this potentially improves the rate of

transactions of the blockchain, as all nodes are still required to hold the current state it

does not solve data storage requirements.

• Sharding the current state – this more complex application requires shards of a

complete state to be divided into several shards. In this application, each shard

essentially acts as its own ‘mini-blockchain’. Transactions that occur between separate

shards are required to undergo a process to ensure representation on both without risk

of double spend. This implementation requires nodes to only store the current state of

the shard they operate and thus does contribute towards reducing a node’s data storage

requirements.

Child blockchains

As proposed by Ethereum founder Vitalik Buterin and Joseph Poon in their Plasma paper, this

is a method where child blockchains (and even child blockchains of child blockchains) can be

created from the main blockchain. Once rooted to their parent chain, a child chain would only

need to store the transaction data relevant to them, ignoring information from every other child

chain in the network and the parent chain it is a member of. The parent chain stores the state

only needs to store the hashes of the child chain and not any of the transaction information.

Benjamin Celermajer, Nicholas Swindell, Will Lopez-Cordero 12-May-2019

6

This significantly reduces the amount of data required to be stored on the main parent chain of

the network.

Accumulators

Cryptographic accumulators were proposed in 1993 by Benaloh and de Mare (REFERENCE)

as an alternative to digital signatures when designing secured distributed protocols. A

cryptographic accumulator is an algorithm that collects a finite set of inputs and creates a single

succinct output. Whilst accumulators are one-way functions in which no single input can be

determined from the output, every input has an efficient witness set or inclusion proof that

certifies membership in the accumulator. It follows that finding a witness for a value not in the

accumulator set is computationally infeasible.

Hash based accumulators

The simplest accumulator is a Merkle Tree, which is a structure that allows for efficient and

secure verification of information in a large data set. A Markle Tree takes a set of 2n inputs that

are hashed together to create a single output, the Merkle Root. Each pair of nodes in the tree

are hashed together at each level until there is only one hash left, as demonstrated in figure 3.

3 - Merkle Tree

Benjamin Celermajer, Nicholas Swindell, Will Lopez-Cordero 12-May-2019

7

Dynamic Accumulators

More recently, Camenisch and Lysyanskaya1 proposed the more complex and practical

dynamic accumulator, where members can be added and deleted from the accumulator. This

increases the potential applications as the accumulator set can be adjusted without requiring

knowledge of the existing set of inputs.

RSA Accumulators

RSA accumulators consist of proof batching and aggregation techniques that can lead to

improvements in the accumulator’s proof size as well as reduce the required node

communication requirements of stateless blockchains.

Through batching and aggregation of proofs, RSA accumulators reduce the overhead on

verifiers of the network who can batch and verify n proofs faster than they can verify a single

proof n times2.

One problematic practical consideration for RSA accumulators is that proof updates cannot be

aggregated. As proofs change, RSA accumulator nodes are required to update all proofs one at

a time, meaning that the Bitcoin network with ~55m UTXOs, would require 55m RSA

operations, or potentially worse if one operation is required per change in the accumulator.

UTreeXO – A hash-based solution to blockchain data storage

Merkle Tree’s have long been applied in cryptography as a mechanism of representing a large

data set as a single output hash. Since hash outputs are unique (in the vast majority of scenarios)

to the set of inputs that create them, proof of membership to the data set can be provided with

knowledge of the hash pairings that create the Merkle Root. The size of the output Merkle Root

is dependent on the hashing algorithm but generally speaking is orders of magnitude smaller

than the large data set of inputs.

UTreeXO is a UTXO hash-based accumulator that takes the current state of Bitcoin as the set

of inputs and creates a Merkle Root(s) to represent the complete data set. Since the Bitcoin

1 http://groups.csail.mit.edu/cis/pubs/lysyanskaya/cl02a.pdf
2 https://eprint.iacr.org/2018/1188.pdf

http://groups.csail.mit.edu/cis/pubs/lysyanskaya/cl02a.pdf
https://eprint.iacr.org/2018/1188.pdf

Benjamin Celermajer, Nicholas Swindell, Will Lopez-Cordero 12-May-2019

8

current state is rarely exactly 2n UTXOs, UTreeXO is not a constant size like the RSA

accumulators. Rather, numerous Merkle Roots are required to represent the current state.

However, due to the hashing algorithm and structure of Merkle Trees, the number of Merkle

Roots required for any given set of inputs grows logarithmically at O(log(n)), inferring that the

tree never becomes prohibitively large. The result is that UTreeXO stores has a ‘forest’ of trees

where each individual tree is different in size and has 2n number of leaves.

For Bitcoin, each 32B UTXO input is hashed with another UTXO to create a 32B output, this

process continues until there is only a set of Merkle Roots left that represent the whole current

state. Currently with ~55m UTXOs in the network, the maximum number of Merkle Roots

required is 27. At 32B per Merkle Root, UTreeXO allows for the Bitcoin current state to be

represented in 864B.

Cryptographic solution – A Dynamic Merkle Tree

Merkle Trees have not been considered an appropriate mechanism for accumulating dynamic

data sets as there have been no solutions to date that allow for the substitution of deleted inputs

with added outputs. The implications of this are that all deleted inputs leave holes in the Merkle

Tree and new inputs are just added to the end of the Merkle Tree. Over time the tree grows into

a large, non-efficient tree where each addition or deletion results in modification of internal

tree nodes which corrupt Merkle paths. This results in the production of inefficient witness sets

that make it difficult to prove inclusion.

One of the novel and innovative cryptographic solutions that has been developed by Tadge

Dryja for UTreeXO is the ability to replace deleted Merkle leaves and branches with smaller

Merkle Trees. By doing so, as new transactions are created, added onto the Merkle tree and

swapped in place for deleted Merkle branches, the size of the tree remains relatively small.

Merkle Tree proofs

Merkle Tree proofs allow for verification that a piece of data is included in the Merkle Tree

without revealing any of the other pieces of data that comprise the tree (i.e. a proof of

inclusion). This is one of the critical aspects that contribute to the efficiency of accumulators.

Without the ability to demonstrate inclusion, users would have to revert back to storing the full

Benjamin Celermajer, Nicholas Swindell, Will Lopez-Cordero 12-May-2019

9

set of data to verify inclusion. Figure 4 demonstrates how a proof is generated, here to prove

the existence of UTXO 3, one must have information about UTXO 4, Hash 1 and Hash 6. The

hash of UTXO 3 with UTXO 4 create Hash 2, the hash of Hash 2 with Hash 1 create Hash 5

and the hash of Hash 5 with Hash 6 create the unique Merkle Root, thus demonstrating that

UTCO 3 must be in the dataset. Since all verifiers are required to store the Merkle it is simple

for them to match the proofs root with their Merkle root.

Figure 4 - Proof of inclusion

Adding leaves

As UTXOs are created in the blockchain they enter the current UTXO set and are added to the

end of the current Merkle tree. As the number of UTXOs in the network increases so too does

the size of the Merkle tree and the number of possible Merkle roots required. However, the

relation between number of UTXOs and size is not linear but rather represented by a log

function where O(log(n)) represents the maximum number of Merkle roots required for the set

of n UTXOs.

When a new leaf is added to the Merkle tree, if the tree it is added to had an odd number of

leaves the accumulator will create a hash of the odd leaf with the new leaf and continue hashing

up the tree until it creates an odd number of hashes at its horizontal level (Figure 5).

Figure 5 - Hashing of new leaves

Benjamin Celermajer, Nicholas Swindell, Will Lopez-Cordero 12-May-2019

10

Deleting leaves

As UTXOs are spent, they are removed from the data set and thus the Merkle Tree. This leaves

holes in the Merkle Tree and can void proofs that previously existed (demonstrated in Figure

8). As mentioned previously, this has previously hindered Merkle Tree adoption in dynamic

accumulators as it leaves imperfect tree structures, thus making proofs of inclusion inefficient.

However, UTreeXO has a novel multi algorithm solution where deleted tree leaves and nodes

can be replaced to ensure all trees are always complete. The three algorithmic operations that

enable this function are ‘twin’, ‘swap’ and ‘root’.

• Twin – If deleted siblings are right next to each other, they can be skipped, and just

their parent hash can be deleted.

Figure 6 - Twin operation

• Swap – If deleted nodes at the same height are not next to each other in the tree, they

can be moved so that they are. This allows for the newly paired sibling nodes to be

hashed and have their parent hash deleted. By doing so, rather than deleting two ‘sub

trees’ at a given height, x, you can delete one ‘sub tree’ at height x+1. This functionality

is only enabled because UTreeXO participants can identify the location of deletions

from the information from their unique proof of inclusion.

Benjamin Celermajer, Nicholas Swindell, Will Lopez-Cordero 12-May-2019

11

Figure 7 - Swap operation

• Root – This operation identifies the height of a deleted ‘sub tree’ and replaces it with a

complete tree within the accumulator that is the same height.

Figure 8 - Leaf / root deletion

Figure 9 - Root operation

Benjamin Celermajer, Nicholas Swindell, Will Lopez-Cordero 12-May-2019

12

Operationalizing UTreeXO

UTreeXO has been developed and designed as a data scaling solution for any UTXO

blockchain, specifically with Bitcoin in mind. Due to the distributed nature of Bitcoin’s

governance and high security standards, it has a highly conservative and slow moving roadmap

where any proposed upgrades to Bitcoin Core need to undergo a long process of peer review

before achieving a 100% majority approval or risk a hard fork.

One of the design features of UTreeXO is that it can exist in parallel with Bitcoin Core and

does not require any change to the Bitcoin Core code base, nor does it put any additional

information in the blockchain (i.e. proofs are not stored in blocks).

However, there are varying ways of implementation that would be more effective than

launching a parallel network in isolation:

• A soft fork would lead to the most optimal implementation of UTreeXO as it would

require all participants to upgrade their nodes / clients in order to recognize and store

proofs. Since the value of the network to users increases with the number or nodes that

store the UTreeXO Merkle Roots and proofs this is the most optimal implementation.

• A peer-to-peer update could also be committed which allows users to manually select

to run a UTreeXO aware node in the configuration settings. Similarly to the most simple

implementation where no change is made to the Bitcoin Core code, this would result in

a separate UTreeXO network that would operate side by side with Bitcoin.

UTreeXO Architecture

Provided the aforementioned difficulty of gaining traction for a soft fork of Bitcoin, it is most

likely that initially UTreeXO operates as a parallel network that participants can opt into. This

creates a communication issue between UTreeXO aware nodes and Bitcoin nodes.

UTreeXO aware nodes

A UTreeXO aware node can run every single operation that a Bitcoin Core node runs. The key

difference is that rather than being required to store the full state of UTXOs, nodes are only

Benjamin Celermajer, Nicholas Swindell, Will Lopez-Cordero 12-May-2019

13

required to store the Merkle Root set that represents the network as well as their own UTXOs

and the related proofs to demonstrate that they exist.

UTreeXO aware nodes are still fully validating nodes and are required to verify all transactions

independently before adding or deleting UTXOs to the current state and creating a new set of

Merkle roots.

For UTreeXO aware nodes to transact, they are also required to send all information that a

current Bitcoin node would communicate, they primary difference is that also attach the proof

of UTXO inclusion. As Bitcoin nodes become aware of these transactions, they just ignore the

proof and process the transaction like any other. The primary issue of running a parallel

network is UTreeXO aware nodes understanding information when Bitcoin nodes transact.

Since Bitcoin nodes do not attach proofs UTreeXO aware nodes do not know which UTXO

has been spent and cannot conduct the twin, root, swap operation and create a new Merkle

Root.

Bridge node

To resolve this a ‘bridge node’ is required that stores the full current state of UTXOs, the full

UTreeXO Merkle Tree and the Merkle Root but unlike UTreeXO aware nodes, the bridge node

does not delete the data set or any proofs once the Merkle Root is created. As the bridge node

maintains the full state, once Bitcoin Network transactions are received it can attach the

required proof and propagate it to the UTreeXO network, thus enabling UTreeXO aware nodes

to update their states.

Since the Bridge node is required to maintain the full UTXO set and the complete Merkle Tree

of proofs there is an unavoidable data storage overhead. Currently this is approximately 15-

20% of a Bitcoin full node.

Whilst UTreeXO could operate with one bridge node, the system would have vulnerabilities in

a scenario where a Bridge node stopped communicating correct information to UTreeXO aware

nodes or went offline and stopped communicating all together. This would render the UTreeXO

network useless as any transaction in the Bitcoin Network would not have the associated proofs

required by UTreeXO aware nodes and thus they would not be able to conduct the required

operations to create the Merkle Root.

Benjamin Celermajer, Nicholas Swindell, Will Lopez-Cordero 12-May-2019

14

As such, to secure the network it is recommended that numerous bridge nodes operate globally.

Having said this, the bridge node cannot communicate bad information to UTreeXO aware

nodes since nodes are still fully validating.

Architecture

UTreeXO can be implemented in parallel to the Bitcoin Network with the existence of a (few)

bridge node to attach the required proofs for UTreeXO aware nodes to operate.

Figure 10 - UTreeXO parallel implementation with Bitcoin

UTreeXO Advantages

UTreeXO’s greatest contribution to Bitcoin is the ability to allow anyone to run a fully

validating Bitcoin node in under a kilobyte, rather than three gigabytes. By doing so, it enables

smartphones, old computers and other small mobile devices to do what is currently limited to

high powered computers and servers.

There are two generic categories of beneficiaries from UTreeXO:

1. Individual Bitcoin users – currently the most popular methods to mobile storage

solutions are third party providers or SPV wallets. Both of these come with significant

security and privacy concerns for users.

Privacy – Third party providers each have their own security policies which vary in

effectiveness and users largely unknowingly adopt these security procedures without

much due diligence. As such there are numerous instances of hacks and loss of user

funds from third party custody. Since SPV wallets are not validating, in special

Benjamin Celermajer, Nicholas Swindell, Will Lopez-Cordero 12-May-2019

15

circumstances like a consensus change, the SPV wallet can be tricked into thinking that

non-upgraded nodes had the correct longest chain and thus validate through them.

Security – Since both third party providers and SPV wallet users provide information

of the UTXOs they own, whilst an identity cannot be explicitly determined, crypto

forensics can lead to identification of owners and value of ownership.

2. Bitcoin Network – since UTreeXO makes it more feasible for individuals to run fully

validating nodes it vastly increases distribution of nodes and thus network security. The

more validating nodes on the network the more secure and harder to corrupt the Bitcoin

Network becomes.

UTreeXO Disadvantages

To obtain the current state of the UTreeXO network, users are required to download the full

history of UTXOs and all of the associated proofs. Whilst all of this can be thrown away after

it has been witnessed, there is a significant amount of data required to be downloaded to obtain

the current state. To complete this function for Bitcoin it currently requires nodes to download

~240GB, for UTreeXO, with the additional proof information that needs to be generated, this

increases to ~270GB. As Bitcoin’s blockchain continues to grow, the 15-20% overhead will

also continue to grow and require significant time for new users to obtain the current state.

Another disadvantage of UTreeXO is that is requires large network effects to operate most

efficiently. If the majority of users are not UTreeXO aware nodes, then UTreeXO users will

receive many transactions without proofs. As such, a bridge node is required to attach proofs

to transactions sent without proofs (i.e. Bitcoin Network transactions). As the network

continues to grow, bridge nodes have the potential to become so large that they require servers

to run and can potentially become centralized which increases the vulnerability of the system

(for 1,000 bridge nodes to simultaneously fail is less likely than for 5 to fail).

Benjamin Celermajer, Nicholas Swindell, Will Lopez-Cordero 12-May-2019

16

UTreeXO code repository current state

The MIT Digital Currency Initiative is home to the UTreeXO repository3. The two structs,

Pollard and forest, are the main components of the code. Forest is for bridge nodes and contains

the entire Merkle Tree / UTreeXO structure along with all of its data and can produce proofs.

Pollard on the other hand can hold and produce partial accumulators and verify proofs. The

structure is defined the way it is because UTreeXO nodes are only require to store the Merkle

root output from the accumulator which the Pollard struct efficiently produces. Bridge nodes

however are required to store the full Merkle tree structure and since Pollard structs are not as

efficient as forest structs for holding the entire Merkle tree / UTreeXO structure, UTreeXO

utilized both structs in its code. However, it is still being explored if constructing a the bridge

node can be done in a more efficient way with Pollard, thus reducing the code down to only

one struct.

The code is still in development by Tadge Dryja but is publicly available on the github. The

code is written in golang, or go, an open source language developed at google and designed for

modern programming that takes advantages of machines with multiple cores.

There are many optimizations that can be added. For instance, an optimal caching strategy

exists for a UTreeXO Initial Block Download, or IBD. This is due to the fact that the entire txo

insertion and removal schedules are known ahead of time. This is comparable to trying to plan

an optimal coat hanging strategy while knowing the arrival and leave time of everyone at an

event ahead of time.

At the time of this writing, 34 commits have been made to the utreexo repository and 2

contributors are listed. The code is still in its early stages and as an open source contribution to

UTXO blockchains, ideally as awareness increases we start to see more peer review and

contributions which would contribute to the code’s strength and implement some of the

previously mentioned optimizations.

3 https://github.com/mit-dci/utreexo

https://github.com/mit-dci/utreexo

Benjamin Celermajer, Nicholas Swindell, Will Lopez-Cordero 12-May-2019

17

Creating a wallet

When investigating the current UTreeXO codebase to scope the project and understand what

was needed to launch a UTreeXO mobile application we identified four key functional pieces

that needed to be developed:

1. A messaging client for bridge nodes to communicate with UTreeXO aware nodes to

facilitate the transfer of proofs.

2. UTreeXO signature verification that allows verification of the right to spend UTXO.

3. A cyrptographic key management solution.

4. Mobile application software (i.e. UI/UX).

While the network is bootstrapped to UTreeXO, initially at least a large majority of transaction

will be generated and propagated from the existing Bitcoin network. This means that no proof

data will be attached to the transactions. As such, UTreeXO aware nodes need to look to bridge

nodes to receive the required proofs information for each UTXO. This is the purpose of the

messaging client. For this we decided that JSON would be a suitable lightweight data

interchange format to complete this task. The steps from Bitcoin non-UTreeXO aware node to

UTreeXO aware node are as follows:

• The Bitcoin non-UTreeXO aware node propagates the transaction data that includes the

relevant UTXO data but no proof data.

• A bridge node recognizes this and receives the UTXO data and matches it to the

UTreeXO Merkle Tree and attaches the relevant proofs.

• The bridge node then communicates this information to the UTreeXO aware nodes so

that they can recognize the transaction has occurred.

• When the new block comes out, UTreeXO aware nodes and bridge nodes update the

Merkle tree so that old UTXOs are deleted, new ones added, a new root added.

• UTreeXO aware nodes can then discards the leaves and are only required to keep the

Merkle root and any proofs associated with their UTXOs.

For signature verification, we decided to use the uspv folder from the lit repository. It is

designed for SPV functionality, and although it is not ready for production yet, we wanted to

Benjamin Celermajer, Nicholas Swindell, Will Lopez-Cordero 12-May-2019

18

keep as much code in golang, or go, as possible, as that is what the utreexo library is written

in.

We choose BlueWallet (github.com/BlueWallet/BlueWallet.git) to develop our mobile

application and key management solution. At first, we wanted to develop a new wallet and

front-end using go, however, we decided that it was simpler for our purposes to find an up to

date wallet built with React Native and build UTreeXO functionality into it. The required

changes from the existing code centred around what the wallet needs to store; SPV wallets are

only required to store block headers where-as UTreeXO wallets are required to hold the

accumulator hashes and their personal UTXO proofs.

Code contributions

Currently to run the UTreeXO initial block download there are several manual steps that need

to be taken, each taking up to several hours. We have written a script (Figure 11) in order to

streamline the process so that there are no time delays between downloading Bitcoin TXO

information and UTreeXO executable programs. The script runs an initial block download

using a utreexo accumulator. The file requires TXO data from testnet or mainnet, and will

install go if it is not already on your machine. The simulation code is in the cmd folder of the

UTreeXO (github.com/mit-dci/utreexo.git) library.

Figure 11 - UTreeXO download script

Benjamin Celermajer, Nicholas Swindell, Will Lopez-Cordero 12-May-2019

19

The messaging client code proved to be too much to write during the semester, but we were

able to work with Tadge Dryja to scope the piece and communicate this to our member

company Digital Garage who are developing the code now. The key steps required for the

messaging client are:

• Code blockproofs currently exists to attach proofs to transactions that are included in

blocks4

• What is not done is attaching proofs to transactions as they are propogated across the

network and into the mempool. To do this would require a similar code to blockproof

(i.e. list of target, list of hashes) but needs to be constructed differently. This can be

done by sending all proofs for all new transactions (easier way but requires more space)

Or the more efficient way is for UTreeXO nodes to communication as follows:

• Sender sends transaction information and the location of the UTXO in the network

• Other node on the network responds with a request for only the proof information they

are missing (e.g. I need a proof to height x). Because of the merkle tree structure of

UTreeXO it is likely that the receiver of the information will have proof information to

a certain height at which the new proof will merge.

• Sender sends proofs up to the requested height only (rather than all proofs to the merkle

root).

In order to implement uspv into the wallet we used ‘go bind’ to generate .jar and .aar bindings

for the library in order to import it to android studio. This allowed us to develop a basic

UTreeXO wallet using BlueWallet, which can be seen in Figure 12.

4 https://github.com/mit-

dci/utreexo/blob/52d341315fd77a2fa97250660db32541a6d412d7/utreexo/blockproof.go

https://github.com/mit-dci/utreexo/blob/52d341315fd77a2fa97250660db32541a6d412d7/utreexo/blockproof.go
https://github.com/mit-dci/utreexo/blob/52d341315fd77a2fa97250660db32541a6d412d7/utreexo/blockproof.go

Benjamin Celermajer, Nicholas Swindell, Will Lopez-Cordero 12-May-2019

20

Figure 12 - UTreeXO wallet skins

Conclusion

UTreeXO applies a novel cryptographic solution to deleting and swapping Merkle tree leaves

that for the first time allow the Merkle tree structure to be used as a dynamic accumulator. This

can be implemented across UTXO public blockchains to reduce the current state into a

representation consisting of series of hashes where membership to the accumulator can be

identified through proofs of inclusion.

By doing so, the requirements to run a full node are significantly reduced since device data

requirements are reduced from 3GB to under 1KB. This allows even the smallest of mobile

devices and computers to feasibly run a full node and benefit from the security and privacy

benefits of the Bitcoin network.

UTreeXO can be launched without any required change to the Bitcoin Core code which

significantly increases the feasibility of the network. However, it considered that a better way

to implement it, without a Bitcoin soft fork, would be with a peer-to-peer update, making

UTreeXO a custom configuration setting when setting up a Bitcoin node.

Benjamin Celermajer, Nicholas Swindell, Will Lopez-Cordero 12-May-2019

21

The key concerns that UTreeXO needs to overcome to ultimately provide an efficient network

for participants to benefit form are:

• The existence of a large number of distributed bridge nodes which have an increased

data storage overhead requirement of ~15-20% above a Bitcoin full node due to the

existence of proof data.

• Achieving a mass of users on UTreeXO so that the network can benefit from the

efficiencies of sending and receiving proof data and verifying Merkle roots to build

consensus on the current state.

UTreeXO is an exciting proposition for the UTXO public blockchains that have faced the

challenge of centralization of nodes due to the increasing data storage requirements of running

a full node and the impracticality of running these on mobile devices and computers as it grows.

	WG18-19UTreeXOCover.pdf
	Untitled

	Title: UTreeXO
	Authors: Authors: Benjamin Celermajer, Nicholas Swindell (Northeastern), Will Lopez-Cordero (MIT)
	Keywords: Keywords: UTreeXO, Wallets
	Member company: Blockchain Lab Program
2018-2019 Working Groups Cycle
Taught by N. Narula, G. Gensler, S. Johnson, and M. Casey
Member Company: Digital Garage (DG)
Project Group: UTreeXO Wallet

